CHROM, 8935

Note

Zur Trennung N-heteropolyzyklischer aromatischer Kohlenwasserstoffe von polyzyklischen aromatischen Kohlenwasserstoffen

Abtrennung durch Komplexchromatographie

H.-J. KLIMISCH* und K. FOX

Forschungsinstitut der Cigarettenindustrie e.V., Gazellenkamp 38, 2000 Hamburg 54 (B.R.D.) (Eingegangen am 19. November 1975)

Nachdem wir ein Verfahren¹ zur Trennung basischer N-heteropolyzyklischer aromatischer Kohlenwasserstoffe von sauren N-heteropolyzyklischen aromatischen Kohlenwasserstoffen und von polyzyklischen aromatischen Kohlenwasserstoffen (PAH) mit Hilfe der Ionenaustauschchromatographie entwickelt hatten, möchten wir über eine Methode berichten, die saure zusammen mit basischen N-heteropolyzyklischen aromatischen Kohlenwasserstoffen (Aza-PAH) von PAH abtrennt. Vielfach ist eine Auftrennung der Aza-PAH in basische und saure Aza-PAH nicht notwendig, wenn z.B. nur geringe Mengen der einen Verbindungsklasse in der anderen enthalten sind. In solchen Fällen kann eine Trennung der PAH von der Gesamtmenge der Aza-PAH mit geringerem methodischen Aufwand, wie anschliessend beschrieben, erfolgen.

Durch Oelert und Giehr² konnte geklärt werden, dass ein komplexchromatographisches Verfahren zur Trennung der Aza-PAH von PAH durch Bildung von Komplexen an Eisen(III)ionen³ z.T. zu erheblichen Verfälschungen dadurch führte, dass auch PAH aufgrund ihres Elektronendonatorvermögens ähnliche Komplexe wie Aza-PAH bilden. Diese Schwierigkeiten konnten wir durch Wahl einer anderen Acceptorphase Ag(I) auf Kieselgel, und Abstimmung auf ein besonderes Elutionsmittelsystem überwinden.

MATERIAL UND METHODEN

In Analogie zu bekannten Verfahren⁴ wird aus Kieselgel 60 (Merck AG), 40–63 μ m, mit AgNO₃ Lösung ein Silber-imprägniertes Trägermaterial hergestellt, das mit Aceton und Chloroform gewaschen und bei 90° getrocknet wird. Mit diesem Trägermaterial wird eine Glassäule 1.25×30 cm mit PTFE-Stempeln und PTFE-Schläuchen (Chromatronix LC 1/2-13) nach einer Trockenpackungsmethode⁵ gefüllt und anschliessend mit dem Lösungsmittel 1% Acetonitril in n-Hexan luftfrei gefahren. Über ein Probeninjektionsventil (107 B25, Chromatronix) werden 20–40 μ l der Lösung von Aza-PAH bzw. PAH in Elutionsmittel injiziert und mittels einer peristal-

^{*} Anschrift: BASF-WPF, D-6700 Ludwigshafen, B.R.D.

tischen Pumpe (Vario-perplex, LKB) bei einer Durchflussrate von 100 ml/h chromatographiert. Die eluierten Substanzen werden durch einen UV-Detektor (Hewlett-Packard Modell 1032 A) in Verbindung mit einem Schreiber (Kompensograph III, Siemens AG) nachgewiesen. Zur Elution der Aza-PAH wird die Säule mit Methylenchlorid als Lösungsmittel chromatographiert.

ERGEBNISSE UND DISKUSSION

Durch Verwendung von Acceptorphasen wie z.B. Eisen(III)ionen auf Kationenaustauschern vom Typ Amberlyst³ ist zwar eine Abtrennung der Aza-PAH von PAH mit geringer Ringzahl, nicht aber mit höherer Ringzahl wie z.B. Coronen möglich². Wir wählten daher als komplexbildenden Träger Silber-imprägnierte Adsorbenzien, wie sie für die Trennung der Aza-PAH vorgeschlagen werden⁴. Mit einem solchen System lassen sich PAH mit dem Lösungsmittel 1% Acetonitril in *n*-Hexan verhältnismässig schnell eluieren, ohne dass bemerkenswerte Trennungen einzelner PAH möglich sind.

Aza-PAH dagegen (Tabelle I) sind mit Lösungsmittelmengen vom zehnfachen des Coronen-Elutionsvolumens nicht eluierbar. Sie verbleiben unter Komplexbildung

TABELLE I ELUTIONSVOLUMINA VERSCHIEDENER PAH UND AZA-PAH IN ZWEI LÖSUNGS-MITTELSYSTEMEN

I = Lösungsmittel 1% Acetonitril in n-Hexan, II = Lösungsmittel Methylenchlorid; $X = \min$ dem Lösungsmittel bis 500 ml nicht eluierbar.

Substanz	Elutionsvolumen (ml)	
	Ī	II
Acridin	X	24
Acridan	X	30
Carbazol	X	25
1,2-Benzacridin	X	27
1,2,5,6-Dibenzcarbazol	X	37
Dibenzo[a,h]acridin	X	38
Anthracen	29	23
Benzo[a]pyren	37	28
Perylen	39	28
Coronen	52	36

auf der Säule und werden somit von den PAH abgetrennt. Ihre Elution gelingt mit Methylenchlorid als Lösungsmittel. Auch hier ist eine echte Auftrennung der Aza-PAH nicht zu beobachten. Eine solche Trennung zur Identifizierung und Bestimmung der Aza-PAH sollte anschliessend mit bekannten Verfahren der Gaschromatographie oder Hochdruckflüssigkeitschromatographie erfolgen. Da die Säule mit dem Silberimprägnierten Kieselgel nach erfolgreicher Elution der Aza-PAH anschliessend wieder auf das Lösungsmittel 1% Acetonitril in n-Hexan umgestellt werden kann, ohne dass sich die Elutionsvolumina bemerkenswert verändern, kann eine Trennung der PAH von den Aza-PAH unter Wiederverwendung der Säule in einen cyclischen Betrieb vorgenommen werden.

484 NOTES

LITERATUR

- 1 H.-J. Klimisch und A. Beiss J. Chromatogr., in Vorbereitung.
- 2 H. H. Oelert und A. D. Giehr, J. Chromatogr., 106 (1975) 465.
- 3 D. M. Jewell und R. E. Snyder, J. Chromatogr., 38 (1968) 351.
- 4 R. Vivilecchia, M. Thiebaud und R. W. Frei, J. Chromatogr. Sci., 10 (1972) 411.
- 5 J. J. Kirkland, in J. J. Kirkland (Herausgeber), *Modern Practice of Liquid Chromatography*, Interscience, New York, 1971, p. 178.